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1.  Introduction 

1.1.  Problem and Project Statement 
MISO runs thousands of production cost simulations (year-long hour-by-hour simulations of the electric 

and economic performance of the MISO grid) every planning study cycle to investigate a host of topics 

including the efficacy of proposed transmission upgrades, the impact of federal policy, and the 

complexity of integrating large amounts of renewables to the system. These simulations, which model 

the entire Eastern Interconnect of the US power system, take large amounts of processing time due to 

high model dimension with a large number of load and generation profiles. The projected high growth of 

renewable penetration in the MISO footprint, and the resulting increase in modeling data, will only 

exacerbate the situation. 
 

To integrate more renewable energy more efficiently and effectively onto the grid, new modeling 

techniques are needed. The goal of this study is to, therefore, research and implement various methods 

to appropriately reduce the fidelity of the data profiles while maintaining an adequate amount of the 

key production cost information. The study will validate the methods’ reliability and quantify the effects 

that profile approximation has on simulation runtime and results. It is expected that the properly 

designed profile reduction method would make the normal 8760 hours production cost simulation more 

efficient. The increased efficiency has the potential to enable us to explore more ways to improve our 

current planning study processes by introducing cutting edge research in academia and industry. 
 

1.2.  Operation Environment 
The final program developed will be used by MISO engineers and modelers to assist in running 

simulations. The results from testing will be reviewed by engineers and used in determining the best 

program inputs to fit their profiles. 
 

1.3.  Intended Users and Uses 
Our intended user is a transmission engineer or modeler who plans to run production cost modeling 

simulations and needs the simulation to produce results faster without losing too much accuracy.
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1.4.  Assumptions and Limitations 
Table 1: Assumptions and Limitations 

 

Assumption                                                                Reason

Input CSVs will have the format: 
•    Row 1 is a nodal ID 
•    Column 1 is sequential time stamps 
•    Cells will state a MW value for 
that node at that time stamp. The value will 
be relevant to the data being represented by 
the CSV 

Python will be the only coding language used in 
this project 

 
K-means is the best clustering algorithm to 
design our program around 

 

 
 
 
 
 
 

Our code must calculate and cluster around 
attributes instead of the full profiles 

This is the only format that we have been given 
so far 
 

 
 
 
 
 
 

MISO engineers use Python more than other data 
analysis languages, such as R, and are very 
familiar with the libraries in Python. 
K-means provides a direct relationship between 
its main user input, the number of clusters, and 
the results runtime while providing an indirect 
relationship between user input and accuracy. 
This was preferable compared to other clustering 
algorithm’s indirect relationships between user 
input and time or accuracy. 

The process of clustering around the entire 
profiles would be too time consuming and we 
believe properly chosen attributes better capture 
the features of the profile that need to be 
preserved.

Limitation                                                                    Reason
There are currently no options for any other 
input CSV formats 

Our program ignores the final days of the year if 
they do not make up a full subsection. For 
example, if the user wants ideal weeks, the 
program ignores the last day because it does not 
fit. 

We have not been given any other formats to 
design for. 

This was designed so as not to give those final 
days any unfair advantage during the comparison 
and clustering algorithm. These days can just be 
remade from the first days of the previous 
subsection.

Our study only looked at weekly clustering                 Due to time constraints we tried to focus our 
search on only weekly clustering, however the 
program can allow for other sized subsets. 

1.5.  End Products and Deliverables 
Below is a list of the major deliverables expected by our client. 

 

• Program that allows the user to set the amount of representative data they want from profile 

and the attributes they want the program to use when determining this representative data. 

•   Analysis of both the chosen data and the results of simulating that chosen data. 

•   Instructions for using the program and recreating/expanding the results obtained 

•   A final presentation to the client summarizing these results. 

•   Detailed explanation of further research opportunities utilizing this program.
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2.  Implementation 
The current method used by the program takes in a production cost model’s set of renewable 

generation and load data in the form of CSV files. It then applies a four step calculation to the data: 

divide the input into subsets by time, calculate attributes related to each subset, find ideal, imaginary 

attributes clustered around what was just calculated, and find the subsets who are closest to these ideal 

attribute sets, making these the ideal subsets. Finally, the code outputs the selected data with the same 

format along with an indexing file that indicates which sections of the data are represented by which 

chosen data. This file also contains a summary of the attributes used in the calculation for review. 
 

Input: Each CSV table in the profile must be formatted such that each row represents an interval of time 

and each column represents a node in the network. The profile data will be split among the CSVs so that 

similar data (e.g. wind generation, solar generation, nodal load) are grouped in the same files. 
 

Divide the input into subsets by time: Once the code has read the data it will section off the rows of the 

data into evenly spaced time subsets. The size of these is defined by the user. The point of this process is 

to make the next step of applying attribute calculations to specific time slices easier. 
 

Calculate attributes related to each subset: Next, the code will apply attribute calculations to each 

subset. These include finding basic attributes like the maximum generation of each node during the 

subset, total energy generated at each node, or maximum positive ramp from one measurement to the 

next. A full list can be seen in the table below. The user can set different attribute lists for each input 

table. 
 

Table 2: Attribute Descriptions 
 

Attribute                     Description 

max                              Maximum value of each node 

min                               Minimum value of each node 
total energy                Cumulative energy of each node 

difference                   Difference between maximum and minimum value of each node 

max ramp                   Largest positive change from one period to the next for each node 
min ramp                    Largest negative change from one period to the next for each node 

percent high               Percentage of periods above 75% max generation for each node 

percent low                Percentage of periods below 25% max generation for each node 
percent extremes      Percentage of periods above 90% or below 10% max generation for each node  

 

The program can also apply calculations based on the nodes’ spatial information. To do this the user 

inputs a type of spatial data, where it can be found, what value to split across, and attributes to apply to 

this split. As an example, the user would supply an extra file containing the node IDs and their 

corresponding latitudes, the user would tell the program to group the nodes into sets above and below 

a certain latitude, say 45. Then the program would sum all the values across the nodes in each group. 

After that, the program would find the hourly difference between the two groups. The user then decides 

which attributes to apply to this difference, using the same possible attributes listed in the table above. 

This process can be repeated as many times with as many different choices as defined by the user. 
 

Once all the attributes are calculated for each input table, they are joined into one 2-dimensional 

matrix. The reason for this is so that the clustering algorithm compares everything as a unified profile.



6  

Find ideal, imaginary attributes clustered around what was just calculated: Now that the program has 

attributes for each time subset, it passes that data through a clustering algorithm (in our case K-means). 

This algorithm iteratively decides the best way to cluster the time subsets into groups based on 

similarities in the attributes. The number of groups is a user defined number (at least for K-means). 
 

Once they are grouped the clustering algorithm provides the average set of attributes for each group. In 

a sense these attributes represent the most ideal time subset to represent all the other subsets in the 

group. 
 

Find the subsets who are closest to these ideal attribute sets, make these the ideal subsets: 

Unfortunately, these ideal sets of attributes cannot be backtracked into full data sets. We cannot design 

a full profile for each node based only on the max generation or load of that node. Therefore, we must 

instead find the subset from the input data whose attributes are closest to these ideal attributes. We 

then designate this close subset the ideal subset that represents all the other subsets in the group. 
 

Output: Finally, the program outputs these chosen subsets in the same format as the input. It was 

designed this way to allow for quickly dropping in the file in the simulation software. The program also 

outputs a secondary file that states which subsets are represented by which subsets. This is to easily 

copy out the results from simulations of the chosen data to the entire profile. This file also contains the 

average value of each attribute applied for each subset.
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3.  Testing Process and Results 
For testing purposes our client provided multi-year data for load, wind generation, and various solar 

generation types. These were used to develop the program. Later they provided a full Plexos profile with 

data files containing load, wind generation, photovoltaic (PV) solar generation, and distributed 

photovoltaic (DPV) solar generation. We will only be discussing results derived from the four data files in 

the Plexos profile so that comparisons remain consistent throughout this section. We will also only be 

discussing results from weekly comparisons (7 day/168 hour subsections).  Finally, we will only be 

discussing results from selections made from unnormalized attributes. We have results from normalized 

data as well for sections 3.1 and 3.2. However, we ran out of time to simulate them and do not have any 

results for them in section 3.3. Therefore, we chose to only discuss results from unnormalized data to 

remain consistent. 
 

This section will start with a brief visualization of the output of the program. From there the section 

contains results visualizing and comparing the attributes, effects that attributes had on week choices, 

and comparisons of simulation output. 
 

First, to better visualize what this program is meant to do, below is a graph showing an approximation of 

a profile’s data set by weeks with different numbers of clusters. The x axis indicates the actual weeks of 

the year and the y axis indicates which week was chosen to represent the actual week. The colors show 

the progression of choices for representation when more clusters can be chosen. 
 

 

Figure 1: Comparison of actual weeks and the weeks chosen to represent them with increasing 
clusters
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Obviously, with only one cluster a single week was chosen, week 21. This week then represents the 

entire year for being the most average. If we were to progress this graph to 52 clusters, each week 

would be represented by itself. Of note is the false downward trend shown with more the higher cluster 

counts. This is most likely due to the cyclic nature of this data and that fall data will look very similar to 

spring data. 
 

3.1.  Attribute Comparisons 
Our first task was to understand how the attributes ‘looked’ across the all the data files so that we could 

determine which ones would provide the most effective clustering. While there are nine attributes, 

because we have 4 different data types there are really 36 attributes that can be applied to this profile. 

For example, maximum load is not comparable to maximum wind generation, which is also not 

comparable to maximum PV solar or maximum DPV solar. Therefore, these similar calculations can be 

considered different attributes. 
 

With that being said, we wanted to visualize the attributes across the year. To start, we took the average 

of every attribute across all nodes and graphed them. We also wanted to show how effective the 

clustering was at capturing these attributes, which can indicate how effective the attribute was at 

influencing the selection. 

 
 

Figure 2: Photovoltaic solar average minimum value across all nodes for every 
week along with indicators for selected weeks 

 

This first graph shows a completely ineffective attribute. As stated in the attribute description table, the 

minimum attribute returns the minimum value of each node for each week. It then compares the 

minimum of each node across all the weeks. Obviously, the minimum of every week is going to be zero 

because every week experiences nighttime. Therefore, the average minimum of every week is zero. This 

attribute is useless because it does not add anything to the selection to compare 52 zeros for every PV 

solar node.
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Figure 3: Load data average total energy across all nodes for every week along 
with indicators for selected weeks 

 

This next graph shows an effective attribute. Not only does it have a range of values, unlike the previous 

attribute, the clustering selections do a good job capturing that range. As shown by the dots, when one 

cluster is selected to try and represent the entire data, the week chosen has an about average value for 

this attribute. As more clusters are added, the new ones move to capture the extremes even better. 
 

 
 

Figure 4: Load data average amount of hours in the extremes across all nodes 
for every week along with indicators for selected weeks 

 

The graph of the average percent extreme values for load data shows an attribute that is not very 

effective for low cluster numbers but might become more effective for higher cluster numbers. With 

one cluster the week chosen does not represent this attribute very well. However, as more clusters are 

allowed, they begin to spread out over the range of data. This is a common theme among many of the
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attributes and shows that as more clusters are allowed it would be a good idea for the user to include 

more attributes in the calculation to optimize the representation. 
 

Another way to visualize these results is by looking at the percent difference between the attributes of 

the actual weeks and the attributes of the weeks they are chosen to be represented by. Each box graph 

was calculated by finding the percent difference between the average value of each week and average 

value of the chosen week to represent it. 

 

Figure 5: Percent difference between the calculated value of the percent 
extremes attribute and the value of the selected weeks for each week 

 

Here we see an attribute that improves its average as the cluster count goes up but starts to lose 

accuracy in its outliers as well. This could indicate that this attribute is not as effective as the first two 

box plots would indicate, but that its improvement is coincidental. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Percent difference between the calculated value of the maximum 
ramp attribute and value of the selected weeks for each week
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The above graph shows an attribute that not only improves its approximation of the average with more 

clusters, it also pulls in its outlying percent difference. This indicates that as more clusters are added, the 

attribute has enough influence to make sure that its variability is also captured. 
 

The purpose of these graphs is to show how some attributes are more influential in the selection 

process than others. This should better explain some of the selections made in the results later. This also 

shows that if the user wishes to capture the variability of certain attributes, they may have to sacrifice 

the consideration of other attributes. 
 

3.2.  Selection Comparisons 
Moving away from the in-depth analysis of all the attributes together, we are going to take a more 

general look at different attribute combinations. Due to computational limitations, it would be 

impossible to test every possible combination of attributes, seeing that there are nine across four files 

so 36 attributes. Instead we look at the attributes on a smaller scale, specifically by file. 
 

Our next step was to try every combinations of attributes for a single file, 512 combinations. We then 

grouped the results so to compare whether including one attribute changed any of the selected weeks. 

For example, when we clustered only the wind file with the attributes percent low and percent high, the 

chosen week was 15. However, if we included maximum so that the attribute list was maximum, percent 

low, and percent high, the chosen week was 21. We can say from this that the attribute maximum made 

a difference on the outcome of the selection. If instead we looked at the list percent low and total 

energy, adding maximum did not change the outcome because each attribute lists selected week 21. We 

can say that maximum did not make a difference here. Repeating this step for all attributes in a file, 

across all files, produces the following graph. 
 

 
 

Figure 7: Comparison of wind attributes' influence on week selection due to 
increasing clusters
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Figure 8:Comparison of load attributes' influence on week selection due to 
increasing clusters 

 

 
 
 
 
 

 
 

Figure 9: Comparison of PV solar attributes' influence on week selection due to 
increasing clusters
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Figure 10: Comparison of distributed PV solar attributes' influence on week 
selection due to increasing clusters 

 

From this process we can determine which attributes affect the outcome the most in the individual files. 

For example, we can draw the same conclusions about the minimum attribute for solar data as we did in 

the previous section. Because minimum almost never makes a difference in the combinations it’s 

included in, we can say that it either has no range of values or its variability isn’t being represented 

properly. From the previous section we know that it is the former. Other attributes, such as total energy 

for every file, show that they are almost always, if not always, the deciding factor in the decision for 

which weeks are selected. 
 

Then there are attributes, such as maximum for the solar files, that show increasing influence with more 

clusters. This is probably due to the fact that as more clusters are added, there is more room to capture 

the variability of less influential attributes. 
 

It should be noted that this comparison does not capture all the effectiveness of the attributes when 

more than one cluster is used. This is because the comparison does not capture the edges of the groups. 

For example, while it is true that percent low very rarely affects the selected weeks, it could move weeks 

that were at the border of one group into another group. 
 

3.3.  Simulation Result Comparisons 
We ran three comparison tests on Plexos output data, comparing full year output with our 

approximated output. These tests included locational marginal pricing (LMP), Production Cost, and 

capacity factor. We used least squares error when comparing the 2 outputs, meaning that as the gap 

between the numbers increases, the error exponentially increases. Since running 52 Plexos runs would 

take too long, we chose random weeks to test as well as the weeks our code chose. The chosen 

week’s Plexos output was appended to an array 52 times to form a full year array of identical weeks, and 

this was compared to the full year run. 
 

The LMP shows what the price of a unit of energy was at that specific hour over the MISO footprint. The 

error values ranged from 1.38*10^5 to 4.93*10^5 with the chosen week’s error being 1.72*10^5. This
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was the second-best error value of the group and proved to us that the chosen week was a good one. 

For the graph below, our chosen week was week 21. 
 

 

Figure 11: Comparison of LMP error between selected weeks and the full data profile 
 

Production Cost is a measure of how much it costs to produce a unit of energy at that given time. We 

summed up all the generators in the MISO footprint for each hour of the year, and then formed full 

years of identical weeks for our testing weeks and chosen week. After comparison, the error values 

ranged from 3.61*10^16 to 6.42*10^16. Our code’s chosen week had the lowest error of the group. The 

error was so big here because the inputted values were huge, typically in the millions of dollars per 

hour, and squaring large values means large errors. 
 

Finally, we looked at capacity value which is just each hour of generation divided by the max generation 

that could be achieved at that hour. We used the full year max capacity for both the individual weeks 

and the full year comparison. Our chosen week’s capacity factor was 42.45% capacity, very close to the 

yearly rate of around 40%. This further proved that our chosen week was a reliable pick.
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4.  Context 
There are four aspects of our design project where we decided to go in a certain direction as opposed to 

taking the alternative approaches/views/perspectives. The four aspects are: clustering methods, criteria 

for selecting representative data samples, weighting certain attributes, and methods for validating 

results. 
 

4.1 Alternative clustering methods 
In our project, our input is a generation/load profile that we apply calculations to study and analyze it 

carefully. These calculations provide key information about the data. Our approach then was to group 

similar sections of the data by clustering around this key information. To do this, we are using a 

clustering algorithm called K-means. K-means forms a fixed user-set number (k) of clusters (collections 

of data points) in a dataset like ours, based on certain information contained in the data points. From 

our research, we found that K-means was the simplest, yet most efficient, method best suited for our 

needs and assumptions. 
 

However, the K-medoids clustering algorithm was a good alternative method. Its inputs are like K- 

means, so it could easily be implemented in our code without requiring more work from the user. K- 

Medoids also has the potentially important characteristic which is that it finds a cluster and represents it 

with one of its members, rather than the mean of its members as in the case of K-means. Our use of the 

K-means does something similar because we find ideal points then pick the points closest to ideal. 

However, since K-medoids does this in one step that could be an advantage over K-mean. A topic for 

further research could be to try K-medoids and see if it picks the same 'centers’, or if doing it in a 2-step 

process like ours produces a better (or worse) solution. 
 

A recommendation would be to further investigate the affects each clustering algorithm has on the 

dataset and then select a main clustering algorithm. We are making this recommendation because we 

did not have time to implement other clustering algorithms in the project, as this would require 

reevaluating what we want the user inputs to be and finding how those affect the final product. 

Therefore, it might be beneficial to see how changing the clustering algorithm will affect the results. We 

think this might be beneficial because it looks for our results from a different, and possibly better, 

viewpoint. 

 

4.2 Selecting Representative Data Samples 
Our main objective is to reduce computation time of PCM while maintaining result accuracy within a 
certain margin. To address this issue, we needed to narrow the datasets computed by finding fewer 
sample sections of the data representative of the original dataset and simulate those instead, hence 
getting the same vital information in a fraction of the time. Since the original dataset is always going to be 
in the format - time periods x node, our approach was to subdivide the periods into either days, weeks, or 
months and then calculating attributes of those subsets; i.e. total energy, max, min, difference, average, 
etc.  
 
But there were other approaches that we found while researching the topic. “The 8760 hours that make 
up a year are broken down into time blocks (referred to here as ‘time slices’) that capture seasonal, 
weekly, and daily variations” (Planning for the renewable future: Long-term Modelling and tools Expand 
Variable Renewable Power in Emerging Economies by International Renewable Energy Agency (IRENA))5. 
The representative time slices were within the range of 12 to 64. In the paper, Hierarchical Clustering to 
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Find Representative Operating Periods for Capacity-Expansion Modeling by Yixian Liu 
and Ramteen Sioshansi selected represented days6 
 

4.3 Validating Results 
An essential part of our study is to validate the developed method and demonstrate its effectiveness from 
a statistical perspective. In our project, we validate our software tool by simulating actual production cost 
models using Plexos and comparing the results with those found after simulating approximated 
production cost models. The margin of error statistically tells us how effective the chosen attributes, 
cluster count, and subset size combination is.   

Given more time, we could have tested as many combinations of clusters against attributes as possible to 
get a better statistical sense of reliability. This was not possible because of too many questions and not 
enough time. We can better validate our results by using the elbow method to determine the best 
attribute/cluster/subset size combination to use. We tried doing this but didn't get enough data to create 
it. An IEEE study found that the elbow method could be useful in determining the maximum number of 
clusters that represents most of the variance of the data7. Therefore, increasing the number of clusters 
beyond this point will show significantly less variance of the data. In the code written for the project, the 
number of clusters can be changed to any number. This makes the code flexible in adjusting the number 
of clusters.  

 
4.4 Weighting Certain Attributes 

The first misunderstanding is that attributes can’t be weighted. In clustering terms there are samples and 
features. Relating this to our work each week (or day/month) is a sample and each attribute for each 
node constitutes a feature. The distance calculation used in K-means and other clustering algorithms 
considers each feature a dimension in space. When finding the cluster center, they generally compute the 
center of mass of all the samples in a cluster. This center of mass equation:   

 

 

calculates the center of each equation independently of each other. Therefore, weighting a dimension, or 
a feature, or an attribute, won’t do anything to the final calculation.   

However, those mi show that we could add weights to certain samples, or weeks (days/months). And the 
choosing of what weeks get what weights can depend on what values they get for certain attributes. i.e. if 
a week shows high ramp across many nodes (certain features), then we could add weight to that week 
(sample).  

Initial reading didn’t show any work on this subject; however, they are probably using a different term for 
this concept and further reading might shed more light. A few reasons we ignored this concept is because 
we misunderstood it as weighting the attributes and we didn’t have time to add this new dimension of 
possible opportunities to the work.  

 

In the paper, Planning for the Renewable Future: Long-term Modelling and Tools Expand Variable 

Renewable Power in Emerging Economies by International Renewable Energy Agency (IRENA) 

highlighted the usage of representative time slices to break down the 8760 hours that make up a year. 

This is different from the work done in the project because the 8760 hours were broken into down into 

representative weeks to capture variations in the project. The issue of selecting representative data 

subsets was an issue looked at in this project and in this paper. Also, weighting attributes was looked at 



17  

as an issue for the project, and IRENA decided to add “capacity-credit” values. In the project, weights 

could be added to certain samples, or weeks (days/months). Moreover, the choosing of what weeks get 

what weights can depend on what values they get for certain attributes I.e. if a week shows high ramp 

across many nodes (certain features), then we could add weight to that week (sample).  In this paper, 

capacity credit was added to the models in order to reflect the contribution of the alignment of demand 

and supply. The paper, Hierarchical Clustering to Find Representative Operating Periods for Capacity- 

Expansion Modeling by Yixian Liu, and Ramteen Sioshansi used the hierarchical clustering method to 

find clusters in the data, whereas in our project, K-means was used to cluster the data. All clustering 

methods have the goal of minimizing the sum of the distances between every object or periods of time 

and the cluster’s centroid or median. 
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Appendices 

A.  Manual 
This manual will be broken into 3 sections: Input file formats, GUI walkthrough and option explanation, 

and instructions for expansion. 
 

For this code to work, the user must have “approx_steps.py”, “attribute_calculations.py”, 

“spat_att_calculations.py”, and “GUI.py” in the working folder. They must also have the python libraries 

“numpy”, “pandas”, and “scikit-learn” installed. 
 

All questions and error reports can be emailed to jared.rickard357@gmail.com 
 

A.1.  Input File Format 
Nodal measurement data: These files contain data obtained every time period from nodes in the electric 

grid. This data must be organized in a .CSV file such that the first column contains datetime stamps and 

the first row contains node identifiers (names, numbers, etc.). A cell at the intersection of a node and 

datetime should contain the value measured at that node at that time. 
 

It is assumed that all measurements in a single file will be related to each other (e.g. A .CSV will contain 

all load measurements in the grid, a .CSV will contain all wind generation in the grid, etc.). It is also 

assumed that the datetime stamps will be the same period and will be sequential. 
 

Nodal spatial data: These files contain data pertaining to a node’s location, such as latitude, longitude, 

surrounding population, etc. This data must be organized in a .CSV file such that the first column 

contains node identifiers (the same identifiers used in nodal measurement data) and the first row 

contains headers labeling the type of spatial data. A cell at the intersection of a header and node should 

contain that header’s type of information at that node. 
 

It is assumed that all data contained in a column will be the same type and will have a meaningful less 

than/greater than comparison. It is also assumed that these node identifiers can be matched to the 

node identifiers in nodal measurement data. 
 

A.2.  GUI Walkthrough and Option Explanation 
After starting the program, the user will be greeted with a window containing many textboxes and 

options. To use this tool, please fill out Input File, Output Destination, and Output Name. If the user 

wishes to cluster by comparing nodal attributes, please fill out Attributes. If the user wishes to cluster by 

comparing groups of nodes organized by their spatial data, please fill out as many rows of Spatial type, 

Spatial value, and Spatial attributes as required. If the user wishes to cluster by comparing both they 

may fill out both. If the user has multiple nodal data files to cluster, they should press More Files and fill 

out the new text boxes. The user must also fill out all text boxes below the More Files button as well. 

When all options have been correctly set, press the approximate button. When done close the window 

to end the program. 
 

Below is an explanation of the various options. 
 

Input File: This text box should contain the location of a nodal measurement data file (e.g. 

D:/Downloads/DPV.csv). A button to the right, ‘Find File’, will open a file explorer to search for the file. If
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an input file section is not needed, leaving this text box blank will make sure the code ignores all fields 

related to this input file. 
 

Output Destination: This text box should contain the directory to store the approximated version of the 

input file (e.g. D:/Downloads/temp). A button to the right, ‘Set Directory’, will open a directory explorer 

to search for the directory. 
 

Output Name: This text box should contain the name for the file(s) storing the approximated version of 

the input file (e.g. DPV_cluster_#.csv). If ‘Write data into one CSV with consecutive dates’ is unchecked 

and a ‘#’ is contained in the name, then the cluster number will replace the ‘#’ in the final files. If ‘Write 

data into one CSV with consecutive dates’ is unchecked but there is no ‘#’ in the name, then the cluster 

number will be inserted before the ‘.csv’ of the name. If ‘Write data into one CSV with consecutive 

dates’ is checked then one file is written and the cluster numbers are ignored. 
 

Attributes: This text box should contain the attributes the user wishes to apply to the input file. This list 

will be in a comma-space delimited format (e.g. max, min, total energy, difference). The list of currently 

useable attributes is given below: 
 

Table 3: Attribute Descriptions 
 

Attribute                     Description 

max                              Maximum value of each node 

min                               Minimum value of each node 
total energy                Cumulative energy of each node 

difference                   Difference between maximum and minimum value of each node 
max ramp                   Largest positive change from one period to the next for each node 

min ramp                    Largest negative change from one period to the next for each node 

percent high               Percentage of periods above 75% max generation for each node 

percent low                Percentage of periods below 25% max generation for each node 
percent extremes      Percentage of periods above 90% or below 10% max generation for each node  

 

Spatial Data Location: This text box should contain the location of the nodal spatial data related to the 

input file (e.g. D:/Download/Spatial Bus Mapping Data.csv). A button to the right, ‘Find File’, will open a 

file explorer to search for the file. If no spatial data is needed this text box can be left blank. 
 

New Spatial Choice: This button opens a new row of text boxes corresponding to ‘Spatial type’, ‘Spatial 

value’, and ‘Spatial attributes’. 
 

Spatial type: This text box should contain a type of spatial data the user wants to split the measurement 

data by. The text here must correspond to a header in the nodal spatial data file (e.g. A header in the 

nodal spatial data says ‘Lat’ so this text box could contain Lat). 
 

Spatial value: This text box should contain the value the user wishes to split the nodes between, in terms 

of the values under the spatial type data (e.g. nodes in the grid could range across latitudes 22 to 

54, so the user might pick spatial type = Lat and spatial value = 35 to apply attribute calculations to the 

difference between nodes above and below latitude 35). This value must be in the same format as the 

data in the nodal spatial data.
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Spatial attributes: This text box should contain the list of attributes the user wants to apply to the 

difference found from spatial type and spatial value. This list can contain the same attributes found in 

the attribute table. 
 

More Files: This button will create a new box containing another set of options for a new input file. This 

button can be used as many times as needed to create input file options for all the data files related to 

the simulation profile. 
 

Where to store indices: This text box the directory to store the indices data (e.g. D:/Downloads/temp/). 

A button to the right, ‘Set Directory’, will open a directory explorer to search for the directory. 
 

What to call indices file: This text box should contain the name for the file storing the indices (e.g. 

indices.csv). This file outlines the representation calculated and metadata statistics. 
 

Number of desired clusters: This text box should contain an integer determining how many 

representative subsets to calculate. This value should be in the range 0 : (number of periods / size of 

subsets). 
 

Size of subsets: This text box should contain an integer determining the length of subsets which will be 

compared (e.g. if the user wishes to compare weeks against each other to find representative weeks, 

they should type 168 for hourly data, because 168 hrs = 1 wk). 
 

clustering algorithm: This dropdown list contains all the useable clustering algorithms. NOTE: Currently 

only kmeans is available. However, if more options become available, they could change the meaning of 

previous text boxes, like ‘Number of desired clusters’. Please make sure this stays up to date should 

more options be added later. 
 

Normalize metadata: If this box is checked, during the metadata calculations all the columns will be 

divided by their maximum values to normalize the metadata before clustering. Default: unchecked 
 

Show progress messages: If this box is checked, during the approximation process, descriptive messages 

will appear in the python console describing what section of code just finished and how long it took to 

accomplish. Default: checked 
 

Write the chosen data to CSVs: If this box is checked, the chosen representative data will be written to 

CSVs in the same format as the input file. Default: checked 
 

Write indices CSV: If this box is checked, the file containing representative information and metadata 

statistics will be written. Default: checked 
 

Write data into one CSV with consecutive dates: If this box is checked, all the chosen subsets will be 

stored in one CSV with datetime stamps starting at the beginning of the profile (e.g. 4 weeks are chosen 

to represent an entire year. The data from these chosen weeks is stored in one CSV, the end of one 

week leading into the beginning of the next week. All there datetimes are replaced with consecutive 

timestamps beginning Jan 1st). 
 

approximate: This button will start the python code approximating all the input files listed with the 

options chosen.
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A.3.  Instructions for Expansion 
Adding more attribute calculations: All the attribute calculation functions are found in 

‘attribute_calculation.py’. They are defined such that their input is a 1D array of generation or load data 

and their output is a single value. This 1D array is exactly ‘subset_size’ long (24 for daily, 168 for weekly, 

720 for monthly). This input corresponds to one node’s data for one subset term. The output is 

whatever single value you want to calculate for one node during the subset term. 
 

To create your own attributes, start by creating a function definition with one input (the 1D array of 

generation or load data for the subset term). Inside the function perform whatever calculations you 

wish to find the attribute you want. Finally return the single attribute value you want for that generation 

for that subset term. To link it to the rest of the code, go to the definition of “att_set()” and start a new 

line inside the “switcher” dictionary variable. In this line write “[name of attribute]” : [function name]. 

Finally, to use this attribute, write out [name of attribute] in the attribute list inside the GUI. 
 

What happens when the code runs is that the attribute list is passed to the metadata building code, 

which goes node by node, attribute by attribute, subset by subset, calculating the attributes. When the 

attribute name gets passed to “att_set()” it matches it to the function in “switcher” and performs that 

calculation. 
 

Adding more clustering algorithms: The clustering algorithms are contained in functions defined in 

‘approx_steps.py’. They are defined such that their inputs are the number of clusters and the metadata 

matrix of the input data and their outputs are a 2D array of distance measurements and a 1D array of 

cluster labels. The array of distance measurements is between the subsets and the ideal attribute sets. 

Each row represents a subset of the data and each column represents an ideal data set. The array of 

labels is the list stating which column of the distance array is smallest for each row. 
 

To create your own clustering algorithm wrap, create a function definition with two inputs (the clusters 

and metadata). From here the internals depend drastically on what python has for implementations of 

the clustering algorithm of choice. The next part of this is function needs to return a 2D array of 

distances and 1D array of labels, outlined previously. To link this new function to the code go to the 

definition of “calculate_dist_and_labels()” and start a new line inside the “switcher” dictionary variable. 

In this line write “[name of algorithm]” : [function name]. To create a new option in the GUI, go to line 

42 of ‘GUI.py’, the line defining “algorithm_choices”, and add “[name of algorithm]” to the list. 
 

Similar to what happens in the attribute calculation, the algorithm string gets passed to 

“calculate_dist_and_labels()” and uses it to pass on the arguments to the proper function. 
 

NOTE: These instruction gloss over a lot about creating the internals of the function. This is because the 

implementation is going to differ drastically depending on what is added. A very likely issue to arise is 

that many algorithms will require different inputs than just data and cluster count. A good example is 

‘DBSCAN()’ from sklearn.cluster library. This function and the algorithm behind it doesn’t allow the user 

to set the cluster number, however it does let the user define things like “the maximum distance 

between two samples for one to be considered as in the neighborhood of the other.” (taken 

from sklearn.cluster.DBSCAN help page). To pass these through is left as an exercise to the reader, 

however a good start would be reviewing how arguments are passed or ignored by python functions. In 

the same vein, a lot of user inputs that could be set for kmeans and kmedoids have been left as default 

in our implementation. If someone wanted to change these around, they would have to change them in
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the function definition or rewrite to “approximate()”, “calculate_dist_and_labels()”, and the wrapper 

function of choice to pass on the relevant arguments. Not difficult, the task is just making sure it gets 

passed down correctly. 


